

AsteRx SB3 ProBase

Housed multi-frequency GNSS base station receiver

The AsteRx SB3 ProBase is a multi-frequency and multi-constellation GNSS receiver designed to operate as a base station for local RTK or to be used for network densification. On top of providing top-quality measurements this receiver offers full configuration flexibility as well as easy monitoring capabilities. It incorporates the latest anti-jamming technology for unbeatable robustness and reliability. Its compact and rugged housing is tailored for easy deployment in a wide range of environments.

KEY FEATURES

- ▶ Robust top-quality measurements for RTK and differential corrections
- ▶ Multi-constellation for best availability
- ▶ Multi-frequency for reliability
- ▶ **AIM+** anti-jamming, anti-spoofing advanced interference mitigation and monitoring technology
- ▶ Open interface for full compatibility with all standard data formats

BENEFITS

High quality real-time GNSS corrections

The AsteRx SB3 ProBase features the latest Septentrio quad constellation GNSS technology for best quality measurements. It generates real time differential and RTK corrections which can be used in GNSS and GNSS/INS products to achieve centimeter-level accuracy.

Interference robustness

ProBase features **AIM+**, the most advanced on-board anti-jamming, anti-spoofing technology on the market. It can suppress the widest variety of interferers, from simple continuous narrowband signals to the most complex wideband and pulsed jammers.

The RF spectrum can be viewed in real-time in both time and frequency domains.

Septentrio's industry leading **APME+** technology aids in achieving the best multipath rejection while **IONO+** ensures the best measurements and accuracy even under intense ionospheric activity.

Easy-to-integrate

The AsteRx SB3 ProBase supports multiple standard correction messages for best compatibility when integrating GNSS technology. This multi-signal receiver generates highest quality corrections ensuring reliable positioning accuracy for end-users. The product is easy to integrate and comes with fully documented interfaces, commands and data messages. Raw data logging can easily be set-up and the included RxTools software allows receiver configuration, monitoring and data analysis.

RTK Base Station

Survey & GIS

FEATURES

GNSS signals

544 Hardware channels for simultaneous tracking of most visible signals:

- ▶ GPS: L1 C/A, L1C, L2C, L2 P(Y), L5
- ▶ GLONASS: L1 C/A, L2 P, L2 C/A, L3
- ▶ BeiDou: B1I, B1C, B2a, B2b, B2I, B3I
- ▶ Galileo: E1, E5a, E5b, E5AltBoc, E6
- ▶ QZSS: L1 C/A, L1 C/B, L2C, L5
- ▶ NavIC: L5
- ▶ SBAS: EGNOS, WAAS, GAGAN, MSAS, SDCM

Septentrio's patented GNSS+ technologies

- ▶ **AIM+** industry leading anti-jamming, anti-spoofing interference monitoring & mitigation technology
- ▶ **IONO+** advanced scintillation mitigation
- ▶ **RAIM+** (Receiver Autonomous Integrity Monitoring)

Formats

Septentrio Binary Format (SBF), fully documented with sample parsing tools
 NMEA 0183, v2.3, v3.01, v4.0
 RINEX (obs, nav) v2.x, v3.x
 RTCM v2.x, v3.x (MSM messages included)
 CMR v2.0

Connectivity

3 Hi-speed serial ports (RS232)
 Ethernet port (TCP/IP, UDP, LAN 10/100 Mbps)
 Power over ethernet
 1 High-speed/full-speed USB device port
 2 Event markers
 NTRIP (server, caster)
 FTP server
 16 GB internal memory

SUPPORTING COMPONENTS

Embedded Web UI with full control and monitoring functionality.
 RxTools, a complete and intuitive GUI tool set for receiver control, monitoring, data analysis and conversion.
 GNSS receiver communication SDK. Available for both Windows and Linux.

PERFORMANCE

Measurement precision ^{1,2}

			Unsmoothed pseudorange (cm)
GPS		L1C/A, L2C	16
		L2P	10
		L5	6
GLONASS		L1 C/A, L2 C/A	25
		L3	10
		E1 E5a, E5b E5AltBOC	8 6 1.5
Galileo		B1I, B1C, B2I	8
		B2a, B3I	6
		L5	16
BeiDou		L1 C/A, L2C	16
		L5	6
		E1 E5a, E5b E5AltBOC	8 6 1.5
QZSS		L1 C/A, L2C	16
		L5	6
		All signals	Carrier phase 1 - 1.3 mm

Maximum update rate

Position	10 Hz
Measurements	10 Hz

Latency ³

	<10 ms
xPPS out ⁴	5 ns
Event accuracy	< 20 ns

Time to first fix

Cold start ⁵	< 45 s
Warm start ⁶	< 20 s
Re-acquisition avg.	1 s

Tracking performance (C/N0 threshold)

Tracking	20 dB-Hz
Acquisition	33 dB-Hz

PHYSICAL AND ENVIRONMENTAL

SWaP

Size	102 x 36 x 118 mm / 4.0 x 1.4 x 4.6 in
Weight	497 g / 1.1 lb
Input voltage	5 to 36 VDC

Power consumption

GPS/GLO L1/L2	1.1 W
All signals, all GNSS constellations	1.3 W
Maximum	2.5 W

Connectors

Antenna	TNC
ETH	ODU 4 pins
COM1/GPIO	ODU 7 pins
PWR/USB/COM2/COM3	ODU 7 pins

Antenna LNA power output on TNC

Output voltage	5 VDC
Maximum current	150 mA

Environmental

Operating temperature	-30° C to +65° C
	-22° F to +149° F
Storage temperature	-40° C to +75° C
	-40° F to +167° F
Humidity	MIL-STD-810G, Method 507.5, Procedure I
Dust	MIL-STD-810G, Method 510.5, Procedure I
Shock	MIL-STD-810G, Method 516.6, Procedure I/II
Vibration	MIL-STD-810G, Method 514.6, Procedure I

Certification

IP 68, RoHS, WEEE, CE, FCC, IEC 62368-1

¹ 1σ level

² C/N0 = 45 dB-Hz

³ 99.9%

⁴ Including software compensation of sawtooth effect

⁵ No information available (no almanac, no approximate position)

⁶ Ephemeris and approximate position known

